Search results for "decomposition method"

showing 10 items of 29 documents

A decomposition approach for multidimensional knapsacks with family-split penalties

2022

The optimization of Multidimensional Knapsacks with Family-Split Penalties has been introduced in the literature as a variant of the more classical Multidimensional Knapsack and Multi-Knapsack problems. This problem deals with a set of items partitioned in families, and when a single item is picked to maximize the utility, then all items in its family must be picked. Items from the same family can be assigned to different knapsacks, and in this situation split penalties are paid. This problem arises in real applications in various fields. This paper proposes a new exact and fast algorithm based on a specific Combinatorial Benders Cuts scheme. An extensive experimental campaign computational…

decomposition methodsknapsack problemsManagement of Technology and InnovationStrategy and Managementdecomposition methoddiscrete optimizationbenders cutsbenders cutknapsack problemManagement Science and Operations ResearchBusiness and International Managementinteger programmingComputer Science Applications
researchProduct

Parallel Schwarz methods for convection-dominated semilinear diffusion problems

2002

AbstractParallel two-level Schwarz methods are proposed for the numerical solution of convection-diffusion problems, with the emphasis on convection-dominated problems. Two variants of the methodology are investigated. They differ from each other by the type of boundary conditions (Dirichlet- or Neumann-type) posed on a part of the second-level subdomain interfaces. Convergence properties of the two-level Schwarz methods are experimentally compared with those of a variant of the standard multi-domain Schwarz alternating method. Numerical experiments performed on a distributed memory multiprocessor computer illustrate parallel efficiency of the methods.

Parallel computingApplied MathematicsNumerical analysisMathematical analysisParallel algorithmDomain decomposition methodsSingularly perturbed semilinear convection–diffusion problemMulti-level Schwarz methodsComputational MathematicsAdditive Schwarz methodDistributed memoryBoundary value problemSchwarz alternating methodConvection–diffusion equationMathematicsJournal of Computational and Applied Mathematics
researchProduct

A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows

2018

Abstract An efficient and accurate method is proposed to solve the incompressible flow momentum and continuity equations in computational domains partitioned into subdomains in the framework of the smoothed particle hydrodynamics method. The procedure does not require any overlap of the subdomains, which would result in the increase of the computational effort. Perfectly matching solutions are obtained at the surfaces separating neighboring blocks. The block interfaces can be both planar and curved surfaces allowing to easily decompose even geometrically complex domains. The smoothing length of the kernel function is maintained constant in each subdomain, while changing between blocks where…

Computer scienceComputational MechanicsGeneral Physics and AstronomyBoundary condition010103 numerical & computational mathematics01 natural sciencesSettore ICAR/01 - IdraulicaMomentumSmoothed-particle hydrodynamicsPhysics and Astronomy (all)Smoothed particle hydrodynamicIncompressible flowComputational mechanicsMechanics of MaterialDomain decomposition0101 mathematicsMirror particleComputational MechanicConservation of massISPHBlock (data storage)Mechanical EngineeringComputer Science Applications1707 Computer Vision and Pattern RecognitionDomain decomposition methodsComputer Science Applications010101 applied mathematicsMechanics of MaterialsMulti-blockAlgorithmSmoothingComputer Methods in Applied Mechanics and Engineering
researchProduct

Simulation Software for Flow of Fluid with Suspended Point Particles in Complex Domains: Application to Matrix Diffusion

2013

Matrix diffusion is a phenomenon in which tracer particles convected along a flow channel can diffuse into porous walls of the channel, and it causes a delay and broadening of the breakthrough curve of a tracer pulse. Analytical and numerical methods exist for modeling matrix diffusion, but there are still some features of this phenomenon, which are difficult to address using traditional approaches. To this end we propose to use the lattice-Boltzmann method with point-like tracer particles. These particles move in a continuous space, are advected by the flow, and there is a stochastic force causing them to diffuse. This approach can be extended to include particle-particle and particle-wall…

Physics::Fluid DynamicsFlow (mathematics)Computer scienceNumerical analysisPoint (geometry)Domain decomposition methodsMechanicscomputer.software_genrePorositycomputerSimulationSimulation softwarePulse (physics)
researchProduct

Mixed integer optimal compensation: Decompositions and mean-field approximations

2012

Mixed integer optimal compensation deals with optimizing integer- and real-valued control variables to compensate disturbances in dynamic systems. The mixed integer nature of controls might be a cause of intractability for instances of larger dimensions. To tackle this issue, we propose a decomposition method which turns the original n-dimensional problem into n independent scalar problems of lot sizing form. Each scalar problem is then reformulated as a shortest path one and solved through linear programming over a receding horizon. This last reformulation step mirrors a standard procedure in mixed integer programming. We apply the decomposition method to a mean-field coupled multi-agent s…

Model predictive controlApproximation theoryMathematical optimizationLinear programmingBranch and priceShortest path problemDecomposition method (constraint satisfaction)Optimal controlInteger programmingMathematics2012 American Control Conference (ACC)
researchProduct

Boundary elements analysis of adhesively bonded piezoelectric active repair

2009

Abstract This paper presents the analysis of active piezoelectric patches for cracked structures by the boundary element method. A two-dimensional boundary integral formulation based on the multidomain technique is used to model cracks and to assemble the multi-layered piezoelectric patches to the host damaged structures. The fracture mechanics behavior of the repaired structures is analyzed for both perfect and imperfect interface between patches and host beams. The imperfect interface, representing the adhesive between two different layers, is modeled by using a “spring model” that involves linear relationships between the interface tractions, in normal and tangential directions, and the …

CantileverMaterials scienceFissurePiezoelectric sensorbusiness.industryMechanical EngineeringDomain decomposition methodsFracture mechanicsStructural engineeringPiezoelectric materialPiezoelectricityImperfect bondingmedicine.anatomical_structureDiscontinuity (geotechnical engineering)Mechanics of MaterialsActive repairmedicineGeneral Materials ScienceBoundary Element analysiSettore ING-IND/04 - Costruzioni E Strutture AerospazialibusinessBoundary element methodEngineering Fracture Mechanics
researchProduct

Fictitious Domain Methods for the Numerical Solution of Two-Dimensional Scattering Problems

1998

Fictitious domain methods for the numerical solution of two-dimensional scattering problems are considered. The original exterior boundary value problem is approximated by truncating the unbounded domain and by imposing a nonreflecting boundary condition on the artificial boundary. First-order, second-order, and exact nonreflecting boundary conditions are tested on rectangular and circular boundaries. The finite element discretizations of the corresponding approximate boundary value problems are performed using locally fitted meshes, and the discrete equations are solved with fictitious domain methods. A special finite element method using nonmatching meshes is considered. This method uses …

Numerical AnalysisPhysics and Astronomy (miscellaneous)Fictitious domain methodPreconditionerApplied MathematicsMathematical analysisBoundary (topology)Domain decomposition methodsDomain (mathematical analysis)Finite element methodComputer Science ApplicationsComputational MathematicsModeling and SimulationBoundary value problemInvariant (mathematics)MathematicsJournal of Computational Physics
researchProduct

Domain decomposition in the symmetric boundary element analysis

2002

Recent developments in the symmetric boundary element method (SBEM) have shown a clear superiority of this formulation over the collocation method. Its competitiveness has been tested in comparison to the finite element method (FEM) and is manifested in several engineering problems in which internal boundaries are present, i.e. those in which the body shows a jump in the physical characteristics of the material and in which an appropriate study of the response must be used. When we work in the ambit of the SBE formulation, the body is subdivided into macroelements characterized by some relations which link the interface boundary unknowns to the external actions. These relations, valid for e…

Applied MathematicsMechanical EngineeringNumerical analysisBoundary element analysisMathematical analysisComputational MechanicsOcean EngineeringDomain decomposition methodsFinite element methodComputational MathematicsComputational Theory and MathematicsCollocation methodCompatibility (mechanics)JumpBoundary element Symmetric boundary element method Macroelements SubstractingSettore ICAR/08 - Scienza Delle CostruzioniBoundary element methodMathematicsComputational Mechanics
researchProduct

Qualitative analysis of matrix splitting methods

2001

Abstract Qualitative properties of matrix splitting methods for linear systems with tridiagonal and block tridiagonal Stieltjes-Toeplitz matrices are studied. Two particular splittings, the so-called symmetric tridiagonal splittings and the bidiagonal splittings, are considered, and conditions for qualitative properties like nonnegativity and shape preservation are shown for them. Special attention is paid to their close relation to the well-known splitting techniques like regular and weak regular splitting methods. Extensions to block tridiagonal matrices are given, and their relation to algebraic representations of domain decomposition methods is discussed. The paper is concluded with ill…

Pure mathematicsSOR methodTridiagonal matrixLinear systemBlock (permutation group theory)Tridiagonal matrix algorithmDomain decomposition methodsComputer Science::Numerical AnalysisStieltjes-Toeplitz matricesMathematics::Numerical AnalysisAlgebraComputational MathematicsQualitative analysisComputational Theory and MathematicsMatrix splittingModeling and SimulationModelling and SimulationMatrix splitting methodsRegular and weak regular splittingsDomain decompositionAlgebraic numberQualitative analysisMathematicsComputers & Mathematics with Applications
researchProduct

Comparison of parallel implementation of some multi-level Schwarz methods for singularly perturbed parabolic problems

1999

Abstract Parallel multi-level algorithms combining a time discretization and an overlapping domain decomposition technique are applied to the numerical solution of singularly perturbed parabolic problems. Two methods based on the Schwarz alternating procedure are considered: a two-level method with auxiliary “correcting” subproblems as well as a three-level method with auxiliary “predicting” and “correcting” subproblems. Moreover, modifications of the methods using time extrapolation on subdomain interfaces are investigated. The emphasis is given to the description of the algorithms as well as their computer realization on a distributed memory multiprocessor computer. Numerical experiments …

Predictor–corrector methodParallel computingSingular perturbationPartial differential equationDiscretizationApplied MathematicsMathematical analysisExtrapolationMathematicsofComputing_NUMERICALANALYSISDomain decomposition methodsComputational MathematicsMulti-level Schwarz methodApplied mathematicsSingularly perturbed parabolic problemDistributed memorySchwarz alternating methodMathematicsJournal of Computational and Applied Mathematics
researchProduct